Model hierarchies in edge-based compartmental modeling for infectious disease spread.

نویسندگان

  • Joel C Miller
  • Erik M Volz
چکیده

We consider the family of edge-based compartmental models for epidemic spread developed in Miller et al. (J R Soc Interface 9(70):890-906, 2012). These models allow for a range of complex behaviors, and in particular allow us to explicitly incorporate duration of a contact into our mathematical models. Our focus here is to identify conditions under which simpler models may be substituted for more detailed models, and in so doing we define a hierarchy of epidemic models. In particular we provide conditions under which it is appropriate to use the standard mass action SIR model, and we show what happens when these conditions fail. Using our hierarchy, we provide a procedure leading to the choice of the appropriate model for a given population. Our result about the convergence of models to the mass action model gives clear, rigorous conditions under which the mass action model is accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementary Information for Edge-Based Compartmental Modeling for Infectious Disease Spread

In this supplementary information, we give additional information for the edge-based compartmental modeling approach for the spread of susceptible-infected-recovered (SIR) diseases in different types of static and dynamic networks. We give a more detailed discussion of the use of a test node and the assumption that test nodes do not cause infections. We then discuss the calculation of R0, the b...

متن کامل

Edge-based compartmental modelling for infectious disease spread.

The primary tool for predicting infectious disease spread and intervention effectiveness is the mass action susceptible-infected-recovered model of Kermack & McKendrick. Its usefulness derives largely from its conceptual and mathematical simplicity; however, it incorrectly assumes that all individuals have the same contact rate and partnerships are fleeting. In this study, we introduce edge-bas...

متن کامل

AIDS Epidemic Modeling With Different Demographic Structures

The most urgent public health problem today is to devise effective strategies to minimize the destruction caused by the AIDS epidemic. Mathematical models based on the underlying transmission mechanisms of the AIDS virus can help the medical/scientific community understand and anticipate its spread in different populations and evaluate the potential effectiveness of different approaches for bri...

متن کامل

Mean-field models for non-Markovian epidemics on networks

This paper introduces a novel extension of the edge-based compartmental model to epidemics where the transmission and recovery processes are driven by general independent probability distributions. Edge-based compartmental modelling is just one of many different approaches used to model the spread of an infectious disease on a network; the major result of this paper is the rigorous proof that t...

متن کامل

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2013